Halaman

ucapan

Senin, Oktober 31, 2011

Logarithmic Inequalities

Salam Sukses Mulia SELALU Untukmu
inequality between logarithms of linear functions with equal bases
inequality between logarithms with bases, smaller that 1
inequality between logarithms with base 10
inequality between sum of logarithms and a number
inequality between difference of logarithms and a number
inequality between sum of logarithms with bases smaller than 1 and a number
inequality between logarithms with different bases
inequality between sum of logarithms with different bases and a third logarithm
inequality between difference of logarithms with different bases and a number
inequality between sum of logarithm with irrational number and logarithm with base the square of this irrational number
inequality between defference of logarithms with different bases and a number smaller than one
inequality between module of logarithm and a number
inequality between logarithm divided by another logarithm with the same bases and a number
inequality between logarithm of quadratic funciton divided by logarithm of linear function and a number
inequality between double logarithm and a number

klik adja pada judul diatas n dapatkan solution dari tiap-tiap soal tersebut

Contoh soal 
Tentukan HP dari :  



Jawab :

jadi soal sekarang



kedua rua kita logarimakan dengan basis 2




misal  : 





Syarat : x > 0 (numerus pada soal asal)
Jadi HP untuk soal diatas adalah irisan keduanya :
1/2 < x < 4 












SOAL SOAL PERTIDAKSAMAAN LOGARITMA

Klo butuh kunci jawaban segera
kirim email ke aq.....
kasi tau aq lewat komentar klo da kirim emailnya





               adalah.....







               maka nilai x yang memenuhi adalah ....

                

                
                adalah....

               
               
               
               
               
               


               
               


Minggu, Oktober 30, 2011

Pertidaksamaan Logaritma

DI ULANG-ULANG TERUS 
BIAR DIBACA TERUS
BIAR HAFAL &
TRUS  FAHAM + MENGERTI

Seperti yang pernah aq tulis bahwa bentuk umum logaritma adalah :
a : sebagai basis/bilangan pokok
Syarat : positif dan tidak sama dengan 1
kalo di uraikan akan menjadi 
a > 1  tanda tetap
ato  0 < a < 1  tanda dibalik

b : Numerus / yg dilogaritmakan
Syarat : positif