jadi bila dikatakan di soal Matrik A adalah matrik singular maka Det(A) = 0
Nach mari kita kupas kalimat-kalimat diatas :
> Matrik yang mempunyai Determinan haruslah Berbentuk BUJUR SANGKAR
( Baris dan Kolomnya sama )
> Cara mencari Determinan Matrik yang sederhana untuk ORDO 2 & ORDO 3
Kita pakai cara SORRUS.
ORDO 2 :
ORDO 3 :
>
Untuk selanjutnya dikatakan
Matrik Singular tidak mempunyai INVERS MATRIK
( A square matrix that does not have a matrix inverse.
A matrix is singular iff its determinant is 0)
" Nach loo....apalagi ini"Untuk selanjutnya dikatakan
Matrik Singular tidak mempunyai INVERS MATRIK
( A square matrix that does not have a matrix inverse.
A matrix is singular iff its determinant is 0)
UNTUK LEBIH KOMPLITNYA SILAHKAN BACA JUGA DI SINI
Untuk invers matrik nya silahkan simak uraian dibawah ini yang saya cuplikkan
dari http://mathworld.wolfram.com/MatrixInverse.html
| ||||||||||||||||||||||||||||
The inverse of a square matrix , sometimes called a reciprocal matrix, is a matrix such that
where is the identity matrix. Courant and Hilbert (1989, p. 10) use the notation to denote the inverse matrix. A square matrix has an inverse iff the determinant (Lipschutz 1991, p. 45). A matrix possessing an inverse is called nonsingular, or invertible. The matrix inverse of a square matrix may be taken in Mathematica using the function Inverse[m]. For a matrix
the matrix inverse is
For a matrix
the matrix inverse is
A general matrix can be inverted using methods such as the Gauss-Jordan elimination, Gaussian elimination, or LU decomposition. The inverse of a product of matrices and can be expressed in terms of and . Let
Then
and
Therefore,
so
where is the identity matrix, and
|
makasih sangat bermanfaat . ?
BalasHapus